Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections.

نویسندگان

  • Dianna M Milewicz
  • Kathleen M Trybus
  • Dong-Chuan Guo
  • H Lee Sweeney
  • Ellen Regalado
  • Kristine Kamm
  • James T Stull
چکیده

The importance of maintaining contractile function in aortic smooth muscle cells (SMCs) is evident by the fact that heterozygous mutations in the major structural proteins or kinases controlling contraction lead to the formation of aneurysms of the ascending thoracic aorta that predispose to life-threatening aortic dissections. Force generation by SMC requires ATP-dependent cyclic interactions between filaments composed of SMC-specific isoforms of α-actin (encoded by ACTA2) and myosin heavy chain (MYH11). ACTA2 and MYH11 mutations are predicted or have been shown to disrupt this cyclic interaction predispose to thoracic aortic disease. Movement of the myosin motor domain is controlled by phosphorylation of the regulatory light chain on the myosin filament, and loss-of-function mutations in the dedicated kinase for this phosphorylation, myosin light chain kinase (MYLK) also predispose to thoracic aortic disease. Finally, a mutation in the cGMP-activated protein kinase (PRKG1) results in constitutive activation of the kinase in the absence of cGMP, thus driving SMC relaxation in part through increased dephosphorylation of the regulatory light chain and predisposes to thoracic aortic disease. Furthermore, SMCs cannot generate force without connections to the extracellular matrix through focal adhesions, and mutations in the major protein in the extracellular matrix, fibrillin-1, linking SMCs to the matrix also cause thoracic aortic disease in individuals with Marfan syndrome. Thus, disruption of the ability of the aortic SMC to generate force through the elastin-contractile units in response to pulsatile blood flow may be a primary driver for thoracic aortic aneurysms and dissections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-β signaling and vascular smooth muscle cell contractility.

Aortic aneurysm, including both abdominal aortic aneurysm and thoracic aortic aneurysm, is the cause of death of 1% to 2% of the Western population. This review focuses only on thoracic aortic aneurysms and dissections. During the past decade, the genetic contribution to the pathogenesis of thoracic aortic aneurysms and dissections has revealed perturbed extracellular matrix signaling cascade i...

متن کامل

Molecular Medicine Rare, Nonsynonymous Variant in the Smooth Muscle-Specific Isoform of Myosin Heavy Chain, MYH11, R247C, Alters Force Generation in the Aorta and Phenotype of Smooth Muscle Cells

Rationale: Mutations in myosin heavy chain (MYH11) cause autosomal dominant inheritance of thoracic aortic aneurysms and dissections. At the same time, rare, nonsynonymous variants in MYH11 that are predicted to disrupt protein function but do not cause inherited aortic disease are common in the general population and the vascular disease risk associated with these variants is unknown. Objectiv...

متن کامل

Role of Microvascular Tone and Extracellular Matrix Contraction in the Regulation of Interstitial Fluid: Implications for Aortic Dissection.

The pathophysiology of aortic dissection is poorly understood, and its risk is resistant to medical treatment. Most studies have focused on a proposed pathogenic role of transforming growth factor-β in Marfan disease and related thoracic aortic aneurysms and aortic dissections. However, clinical testing of this concept using angiotensin II type 1 receptor antagonists to block transforming growt...

متن کامل

Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneury...

متن کامل

Copy number variation contributes to sporadic and familial thoracic aortic aneurysms and dissections.

Study Hypothesis The genetic origins of thoracic aortic aneurysms and dissections (TAAD) are relatively unknown. Twenty percent of cases have similarly affected family members, but genes previously identified for familial TAAD have exhibited reduced penetrance and variable severity. The genes previously implicated in familial TAAD (ACTA2, MYH11, TGFBR1, TGFBR2) have all been found to be involve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 2017